Doctor of Philosophy (Ph.D.) in Civil and Environmental Engineering 24 months PHD Programme By Cornell University |TopUniversities

Doctor of Philosophy (Ph.D.) in Civil and Environmental Engineering

Programme Duration

24 monthsProgramme duration

Main Subject Area

Built EnvironmentMain Subject Area

Programme overview

Main Subject

Built Environment

Study Level

PHD

Students in the M.S. or Ph.D. program may select one area of concentration. Each student in the Ph.D. program must take a qualifying examination shortly after receiving the M.S. degree, or, if a student comes to Cornell with an M.S. degree, within nine months after arrival. Additional information on the M.S. and Ph.D. programs is available on request from the graduate field office. Civil Infrastructure Systems aims to augment the traditional education in infrastructure engineering with additional perspectives and systems methods to address new challenges. These new challenges are: understanding how structures behave as a system of components and how individual structures behave together as an infrastructure system and understanding the technical aspects of infrastructure engineering within the social, economic, political and cultural context in which they exist. Further, consideration must be given to long-term maintenance, operation and destruction and uncertainties that affect infrastructure system design and analysis. Environmental Processes is concerned with the protection and management of the quality of the environment for the benefit of society. Degree programs emphasize biological, chemical, and physical phenomena and engineering principles; laboratory and computational skills; and their application to the analysis of relevant problems. Environmental Fluid Mechanics and Hydrology involves the study of fluid mechanics of the environment and the associated application to hydraulics, hydrology, coastal oceanography, and meteorology as related to the wet earth and atmosphere. Environmental and Water Resources Systems Engineering, Research and instruction in this area address the development and application of scientific principles, economic theory, and mathematical techniques to the management and planning of public infrastructure and environmental and water resource systems. Research projects include evaluation of engineering projects, groundwater contaminant modeling and remediation optimization, statistical analysis of hydrologic processes, hydropower systems optimization, water supply systems management, water quality planning, risk analysis, river basin and groundwater systems planning and operation, ecological systems management, sustainable development and computer graphics-oriented decision support systems. Geotechnical Engineering is concerned with the study of the engineering properties and use of earth materials and the measurement of the behavior of earth and rock structures. It includes soil and rock mechanics and foundation engineering. Remote Sensing covers the qualitative and quantitative analyses of aircraft and satellite images, as well as other remotely sensed data, as they are used in inventorying, monitoring, and assessing earth resources and the environment. Structural Engineering includes, in addition to the conventional aspects of structural analysis and design, interests in computational mechanics, artificial intelligence, dynamics and earthquake engineering, behavior of thin steel structures, control of large-space structures, reliability, stochastic mechanics, natural disaster risk assessment and management, civil infrastructure systems, evaluation of structures and non-destructive testing, fracture mechanics, blast and impact loads, progressive collapse, and structural materials. Transportation Systems Engineering embraces policy, planning, design, and evaluation of transport systems and the relationships among transport supply and demand, land use, and regional development. The approach is multimodal and systems oriented; it emphasizes the use of quantitative and analytical techniques of operations research and economics.

Programme overview

Main Subject

Built Environment

Study Level

PHD

Students in the M.S. or Ph.D. program may select one area of concentration. Each student in the Ph.D. program must take a qualifying examination shortly after receiving the M.S. degree, or, if a student comes to Cornell with an M.S. degree, within nine months after arrival. Additional information on the M.S. and Ph.D. programs is available on request from the graduate field office. Civil Infrastructure Systems aims to augment the traditional education in infrastructure engineering with additional perspectives and systems methods to address new challenges. These new challenges are: understanding how structures behave as a system of components and how individual structures behave together as an infrastructure system and understanding the technical aspects of infrastructure engineering within the social, economic, political and cultural context in which they exist. Further, consideration must be given to long-term maintenance, operation and destruction and uncertainties that affect infrastructure system design and analysis. Environmental Processes is concerned with the protection and management of the quality of the environment for the benefit of society. Degree programs emphasize biological, chemical, and physical phenomena and engineering principles; laboratory and computational skills; and their application to the analysis of relevant problems. Environmental Fluid Mechanics and Hydrology involves the study of fluid mechanics of the environment and the associated application to hydraulics, hydrology, coastal oceanography, and meteorology as related to the wet earth and atmosphere. Environmental and Water Resources Systems Engineering, Research and instruction in this area address the development and application of scientific principles, economic theory, and mathematical techniques to the management and planning of public infrastructure and environmental and water resource systems. Research projects include evaluation of engineering projects, groundwater contaminant modeling and remediation optimization, statistical analysis of hydrologic processes, hydropower systems optimization, water supply systems management, water quality planning, risk analysis, river basin and groundwater systems planning and operation, ecological systems management, sustainable development and computer graphics-oriented decision support systems. Geotechnical Engineering is concerned with the study of the engineering properties and use of earth materials and the measurement of the behavior of earth and rock structures. It includes soil and rock mechanics and foundation engineering. Remote Sensing covers the qualitative and quantitative analyses of aircraft and satellite images, as well as other remotely sensed data, as they are used in inventorying, monitoring, and assessing earth resources and the environment. Structural Engineering includes, in addition to the conventional aspects of structural analysis and design, interests in computational mechanics, artificial intelligence, dynamics and earthquake engineering, behavior of thin steel structures, control of large-space structures, reliability, stochastic mechanics, natural disaster risk assessment and management, civil infrastructure systems, evaluation of structures and non-destructive testing, fracture mechanics, blast and impact loads, progressive collapse, and structural materials. Transportation Systems Engineering embraces policy, planning, design, and evaluation of transport systems and the relationships among transport supply and demand, land use, and regional development. The approach is multimodal and systems oriented; it emphasizes the use of quantitative and analytical techniques of operations research and economics.

Admission Requirements

7+
Students must have a Honor's Level BA; Honor's Level BSc.

2 Years
Jan-2000

Domestic
0 USD
International
0 USD

Scholarships

Selecting the right scholarship can be a daunting process. With countless options available, students often find themselves overwhelmed and confused. The decision can be especially stressful for those facing financial constraints or pursuing specific academic or career goals.

To help students navigate this challenging process, we recommend the following articles:

More programmes from the university

PHD Programmes 143